The displacement of an object varies with time according to the equation,

$$y = \left(\frac{3}{8}t^2 - 3t + 5\right)$$
 m. Find the instataneous velocity at $t = 4$ s.

- (A) 45 ms^{-1}
- (B) 12 ms⁻¹
- (C) 3 ms^{-1}

(D) 0 ms^{-1}

$$\frac{10 - 4y = 3(9+) - 3 + 0}{8} = \frac{3 + -3}{4}$$

- Acceleration of a particle is given by $\vec{a} = (2t + 5) \hat{i}$ ms⁻². Calculate the velocity of particle after 5s, if it starts from rest.
- (A) $25 i \frac{m}{s}$ (B) $50 i \frac{m}{s}$ (C) $75 i \frac{m}{s}$
- (D) $100 \hat{i} \frac{\text{m}}{\text{s}}$

$$0 = \int_{0}^{5} a dt$$

$$0 = \int_{0}^{5} (at+5) dt$$

$$= \left(a + 5 + 5 + 5\right)^{5}$$

$$= \left(a + 5 + 5 + 7\right)^{5}$$

$$\therefore a = 2t + 5 \qquad (\because 9 = \int adt)$$

$$\therefore b = \int a dt$$

$$0 = \int t^{2} + 5t^{3}$$

$$= \int at^{2} + 5t^{3}$$

$$= \int t^{2} + 5t^{3}$$

$$= \int a^{2} + 5t^{3}$$

A particle is thrown in vertically upward direction, the correct graph of speed $(v) \rightarrow \text{time } (t)$ 3 is

(A) a

(B) d

(C) c

(A)
$$11\frac{m}{s}$$
, $10\frac{m}{s^2}$

(B)
$$12\frac{m}{s}$$
, 20 $\frac{m}{s^2}$

(B)
$$12\frac{m}{s}$$
, $20\frac{m}{s^2}$ (C) $11\frac{m}{s}$, $20\frac{m}{s^2}$

(D) None of the given

$$U = (3t^{2} + \alpha t)$$

$$Tutegoute it$$

$$= \int (3t^{2} + \alpha t) dt$$

$$= \left[\frac{3t^{3}}{3} + \frac{\alpha t^{4}}{2} \right]$$

$$\mathcal{X} = t^{3} + t^{4}$$

$$\frac{\cancel{3}}{\cancel{4}} = \frac{\cancel{3} - \cancel{3} |}{\cancel{4} - \cancel{4} |}$$

$$= \cancel{3} | - \cancel{3} |$$

$$= \cancel{3} | - \cancel{3} |$$

$$= \cancel{3}$$

$$a = \frac{dV}{dt} = \frac{d(3t^{2} + at)}{dt}$$

$$= \frac{3xat + 2}{a \cdot 6t + 2}$$

$$t = 3 = 3$$

$$a = 6(3) + 2$$

$$a = 40 \quad \frac{m}{s^{2}}$$

5 If velocity (in ms^{-1}) varies with time as V = 5t, find the distance travelled by the particle in time interval of t = 2 s to t = 4 s.

(D) 20 m

Figure shows the graph of velocity versus time for a moving particle. The total distance travelled by the particle in time interval from 0 to 10 s is

Area Under i) i + t

gives 32 (disp(unement)

speed > t =) path keyth

(C) 0 m (B) 50 m

(D) 100 m

Here; total displacement = [=x10x5-=10x5]=0m

$$\alpha = 2 - 5t + t = 3$$

$$\alpha = 2 - 5t + t = 3$$

$$\alpha = 4v = 4 \cdot 5$$

$$\alpha = 4v = 4v = 4$$

$$\alpha$$

- **8** The displacement of particle with respect to time is $s = 3t^3 7t^2 + 5t + 8$ where s is in m and t is in s, then acceleration of particle at t = 1 s is
 - (A) 14 ms^{-2}
- (B) 18 ms⁻²
- (C) 32 ms^{-2}
- (D) zero

Ans (C) 32 ms⁻²

- **9.** Displacement of particle changes with respect to time according to equation $x = ae^{-\alpha t} + be^{\beta t}$ where a, b, α and β are positive constants, then velocity of particle is
 - (A) independent of α and β .
 - (B) will be zero if $\alpha = \beta$.
 - (C) will decrease with respect to time.
 - will increase with respect to time.

$$\alpha = q e^{-\alpha t} + be^{\beta t}$$
.
 $\theta = d\alpha = [q e^{\alpha t} \times (\alpha) + b e^{\beta t}(\beta)] = [b\beta e^{\beta t} - \alpha \alpha e] = 0$
As $t \uparrow$ in (see e.g. smaller in (see e.g.).

- **10** . A ship A is moving Westwards with a speed of 10 km h⁻¹ and a ship B 100 km South of A, is moving Northwards with a speed of 10 km h⁻¹. The time after which the distance between them becomes shortest, is:
 - (A) 0 hr

- (B) 5 hr
- (C) $5\sqrt{2} \, hr$
- (D) $10\sqrt{2} \text{ hr}$

$$dv = \beta x^{-2h}$$

$$dv = d [\beta x^{-2n}] = \beta d [\alpha^{-2n}] = \beta(-2n) x^{-2n-1} = [-2n \beta x^{-2n-1}] = [-2n \beta x^{-2n-1}]$$

$$dv = dv dx = dv dx = dv dx = dv (0) = d$$

$$dv dx = dv dx = dv dx = dv (0) = d$$

$$dv = (\beta x^{2n})(-2n\beta x^{-2n-1})$$

$$\alpha = -2n \beta^2 x^{-4n-1}$$
To the given figure $\alpha = 15 \text{ m/s}^2$ represents the total acceleration of a particle moving in the

In the given figure
$$a = 15 \text{ m/s}^2$$
 represents the total acceleration of a particle moving in the clockwise direction in a circle of radius $R = 2.5 \text{ m}$ at a given instant of time. The speed of the particle is

- (A) 5.7 m/s
- (B) 6.2 m/s
- (C) 4.5 m/s
- (D) 5.0 m/s

$$0.10530 = 9c | F_{c} = \frac{mv^{2}}{R}$$

An object starts uniformly accelerated motion from rest. Which of the following
$$v \to t$$
 graph is correct for it?

A ball is thrown upwards. Which of the following $x \to t$ graph is correct? Neglect the air resistance.

Plane travels 400 m towards north then 300 m towards south and 1200 m vertically 15 upwards, then find resultant displacement

- (A) 1200 m
- (B) 1300 m
- (C) 1400 m
- (D) 1500 m

Rate of decrease of velocity of an object moving with 6.25 m/s is $\frac{dV}{dt} = -2.5\sqrt{\nu}$. Where ν is 16. instantaneous speed. Time taken by object to come to rest is

(A) 1s

(B) 2s

(C) 4s

(D) 8s

$$\frac{dV}{dt} = 6.25 \text{ m/s}.$$

$$\frac{dV}{dt} = -2.5 \sqrt{9}.$$

$$\frac{dV}{dt} = -2.5$$